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Abstract Computer simulations of Fe3+ electron paramagnetic resonance specmaat X (9.5 GHz) 
and Q (34 GHz) bands in the alkali borate glass LizO-ZB203 doped with Fez03 have been 
carried out using nn approach b m d  on the eigenfield method applied to the ’rhombic’ spin 
Hamiltonian. which contains only the Zeeman and quadrupole fine-structure term. In order 
to account for the structurd disorder in the glass, two different distribution densities of fine- 
structm parameters D md E have been tried: a two-dimensional Gaussian function of D and 
). = IE/DI. and the ’Czjzek function’, analogous to the one used in Mdssbauercffect studies. 
In simulating the experimental spectra, care has been taken to fit not only to the most prominent 
features arising at &t = 4.3 (at X and Q bands) and 64 2.0 (at Q band), but also to an 
obvious platenu of the derivative of the absorption, which extends down to the magnetic field 
corresponding to f i s f  1 9.7 (at both bands). As a result, the Qjjzek function can be ruled 
out. The agreement bemeen the experimental and computer-simulated spectra found with the 
Gaussian distribution density suggests the existence, besides orthorhombic symmetry sites (with 
A 2 113). of a considerable number of Fe3+ sites with axial or feebly rhombic distortions 
0. < 0.08). The relatively high mean value of the mid finestructure parameter D is consistent 
with a highly distorted environment of Fe)+ ions in the glass. 

1. Introduction 

Oxide glasses doped with low concentrations of Fe3+ ions exhibit an X-band electron 
paramagnetic resonance (EPR) spectrum with a very prominent sharp peak (‘singularity’) 
with an effective g-factor gd 2: 4.3, accompanied by a plateau (‘shoulder’) that extends 
to gd Y 9.7. In many cases, a peak at g,p n. 2.0 is present as well. There has been a 
serious controversy in the literature concerning the adequate choice of the spin Hamiltonian 
to account for these resonances in glasses as well as in other disordered solids. 

Beginning with the original works of Castner er al [I] and Wickman er al [2], most 
authors adopt the ‘rhombic’ spin Hamiltonian, in which all crystal-field terms other than 
the quadrupole fine structure are omitted 

Here S = 5/2 and all symbols have their usual meaning. For simplicity, instead of the 
rhombic fine-structure parameter E ,  we prefer to use the ratio of rhombic and axial fine 
structure parameters, A = IE/DI. The principal axes x ,  y ,  z of (1) can always be chosen 
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so that the h values are within the limits 0 6 h < l j 3 ,  h = 0 corresponding to purely axial 
symmetry of the environment of the paramagnetic ions and A = 1/3 describing orthorhombic 
('fully rhombic') symmetry, i.e. the maximal degree of rhombic distortion. (Note that in 
some earlier papers another choice of principal axes was made, e.g. see [l].) Following 
this description, several authors have calculated graphs of the resonance line positions (or 
effective g-factors) for different D and A (or E )  values and different orientations of the 
magnetic field B [3-81. These graphs have been used to provide tentative estimates of 
D and h values for Fe3+ in a number of non-crystalline matrices [7,9], namely in borate 
glasses [IO, I I]. 

An alternative approach to the interpretation of the g,f N 4.3 resonance has initially 
been put forward by Kedzie er a[ in a paper dealing with the Fe3' ion in Caw04 crystals 
[12]. In this approach, one adopts a certain version of the spin Hamiltonian that includes 
quartic finestructure terms assumed to possess at least the same order of magnitude as the 
quadrupole terms. From the latter, only the axial term is usually retained 

7-1 = p g B .  S + ;a[% + .$ + S,' - iS (S  + 1)(3S2 + 3.7 - 1)) 

+ &F[35S,4 - 30S(S + 1)s: f 253: - 6S(S+ I )  + 3Sz(S + I) ']  

+ D[S: - fS(S + I)]. (2) 

In spite of the fact that in the case of Caw04 this interpretation has later been disproved 
[ 13,141, some authors attempt to apply it to Fe3+ and Mn'" ions in glasses as well [15,16]. 
The reader interested in this issue will find a relevant discussion in [I71 and [IS]. The 
main objection against the interpretation based on the spin Hamiltonian (2) is that, in 
fact, in all cases of 3d" ions in crystalline hosts, where the spin Hamiltonian parameters 
can be unambiguously determined, the quartic fine-structure parameters turn out to be 
small in comparison with the Zeeman term (for X-band EPR spectra). This makes the 
latter interpretation rather questionable and explains why the bulk of the authors prefer 
the previous one, using the spin Hamiltonian (1). (Nevertheless, the approach stipulating 
the predominance of quartic fine-structure terms in the spin Hamiltonian has recently been 
resuscitated and the graphs of resonance magnetic fields have been calculated for this case 
[191.) 

Because of the relative complexity of the formalism of computer treatment of the 
EPR spectra of disordered solids doped with ions possessing fine structure, only a few 
authors have attempted computer simulations of Fe'* EPR spectra in glasses [17,18,20-23]. 
The X-band EPR spectra of Fe3+ in various glassy systems being very similar, one could 
have expected that a parametrization of these spectra by computer simulations would be 
straightforward. However, as surprising as this might seem, no reliable estimates of fine- 
structure parameters for this ion in glasses have yet been reported. This can be explained 
by the fact that, up to now, the majority of the authors turned their attention to fitting only 
to the most prominent feature centred at g,r Y 4.3. Unfortunately, this feature can arise 
from a very large range of D and E values. (Note that this feature would also arise if one 
had used the spin Hamiltonian (2) to computer-simulate the EPR spectra of Fe".) On the 
other hand, this is not the case with the low-field feature at gd = 9.7, nor with the apparent 
plateau in the derivative-of-absorption spectra of F$+ extending from g,r Y 6 to gd Y 9. 
Previously this part of the spectra has attracted little attention in the studies concerned with 
the computer simulation of EPR spectra. The resonance magnetic-field graphs given in [I91 
clearly demonstrate that the latter features disappear as the quartic spin Hamiltonian term 
depending on the parameter a (the 'cubic' fine structure) grows; see figures 1 and 5 in [19]. 
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This provides one more piece of evidence for the inadequacy of the approach based on the 
spin Hamiltonian (2). 

Thus, one may hope that, by attempting a computer fitting not only to the ger Y 4.3 
peak but rather to the whole low-field portion of the F$+ EPR spectra in a glass on the basis 
of the spin Hamiltonian (l), the possible range of D and A values could be substantially 
reduced. 

The present paper reports on the computer simulations of the Fe3+ EPR spectra in a 
borate glass using a recently developed approach based 'on the eigenfield method [24]. The 
spin Hamiltonian (1) has been chosen on the basis of the reasoning presented above. The 
results obtained highlight the importance, for a reliable estimation of the spin Hamiltonian 
parameters in glassy hosts, of an accurate fitting to all features observed in the experimental 
spectra and not only to the most prominent ones. 

2. Experiment: samples and speetra recording 

A sample of formula 0.995(0.63B~0~4.37Li~O)O.O05Fe~O~ was prepared from a mixture of 
B ~ 0 3 .  Liz0 and Fez03 in suitable proportions, melted in a platinum crucible and quenched 
in air. The sample is feebly coloured. Its vitreous state has been tested by x-ray diffraction. 

A Varian EPR spectrometer with a dual sample cavity was used to record the X-band 
spectra. The microwave frequency (9.516 GHz) was measured with a Hewlett-Packard 
frequency counter. The static magnetic field was measured by means of a nuclear fluxmeter 
associated with the same counter. 

The Q-band spectra (33.94 GHz) were recorded with a Bruker spectrometer in the 
Laboratoire de Chimie de Coordination at the Universiti Paul Sabatier, Toulouse III (France). 

The experimental room-temperature X- and Q-band EPR spectra are shown in figures I(a) 
and (b). As one can see, these spectra are quite typical for the Fef' ions in oxide glasses. 
The most conspicuous feature in the X-band spectrum arises at g,f 4.3; it is accompanied 
by a smooth plateau extending down to the 'shoulder' at g,f N 9.7. In the'Q-band spectrum, 
besides these two features, an intense peak at gef N 2.0 is observed. 

Figure 1. Experimenrnl room-temperature EPR spectra of the g lzs  0.995(0.638201- 
0.37Li20)0.005Fe~O~ a1 (a) 9.516 GHz and ( b )  33.94 GHz. 
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3. Principles of computer simulations 

If one takes into account the distribution of the spin Hamiltonian parameters caused by 
the short-range disorder in the glass, as well as the complete orientational disorder of the 
paramagnetic ions, the EPR spectrum can be expressed as 117,181 

x W ( D .  A, e , w ( B  - BLD, ~ , 0 , @ ) ,  AB). (3) 

Here P(D,  A) is the joint distribution density of spin Hamiltonian parameters (the g-factor 
for Fe”, an S ion, only slightly deviates from the freeelectron value g = 2.0023, and hence 
its distribution can be neglected); 0 and @ are, respectively, the polar and azimuthal angles 
of the magnetic-field vector B in the x ,  y ,  z axes system; vc is the microwave frequency 
(a constant): W is the transition probability: and F ( B  - B,, A B )  is the lineshape (usually 
taken as a Gaussian or a Lorentzian), with the linewidth AB determined by spin-lattice 
and spin-spin interactions and eventually including a broadening caused by smaller spin 
Hamiltonian terms neglected in (1). Thus, in order to computer-simulate the EPR spectrum 
in a glass, the resonance magnetic fields and transition probabilities must be calculated and 
the integration in (3) must be performed for a chosen functional form of P(D,  A). 

In typical cases of ions possessing Zeeman and fine-structure terms of the same order 
of magnitude, the procedure of computing a resonance magnetic field usually consists of 
repeated diagonalizations of the spin Hamiltonian matrix for different values of B ,  until the 
energy level separations match the energy quantum hv,: e.g. see [ZS]. In the present study, 
we have used a direct procedure based on the eigenfield method [26], recently adapted 
for the purpose of computer simulations of Em spectra with distributed spin Hamiltonian 
parameters [24]. The resonance magnetic fields are computed by solving the generalized 
eigenvalue problem 

ApZ = BAGZ (4) 

where 

AF = h v l @  1 - F @  1+ 1@ F+ AG = G @ 1 - 1 @ G+ (5) 

are Hermitian n2 x nz matrices (n = 2s + 1) obtained from the n x n spin Hamiltonian 
matrix H, which, in turn, in most cases of interest can be written as 

H = F + B G  (6) 

with F and G being, respectively, crystal-field and &man operators. The eigenvectors of 
(4), 

Z=u@wV‘ (7) 

are direct products of two spin Hamiltonian matrix eigenvectors corresponding to the energy 
values E and E - hv: 

HU =&U HW = (E  - ~ h v ) v .  (8) 
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The relative weight of a given eigenvalue Br is proportional to the square of the absolute 
value of the corresponding matrix element, 

where pp are components of the electron magnetic moment operator expressed as a row 
vector. For Fe3+ (S = 5/2) AF and AG are 36 x 36 matrices. 

The usual approach to the computation of EPR spectra with distributed spin Hamiltonian 
parameters consists of computing absorption spectra for fixed values of these parameters 
(‘powder patterns’) with a subsequent weighted summation according to the adopted 
distribution density; e.g. see [Z]. Instead of this, we prefer to consider the entire EPR 
spectrum as a superposition of absorptions resulting from individual paramagnetic sites, 
each characterized by a distinct set of parameters D and h and angles B and @. For each 
site, the values of D, A, B and @ are chosen at random, taking into account the distribution 
density of D and h, as well as the isotropic distribution of orientations (the sin 0 factor in 
(3)). The generalized eigenfield problem (4) is solved for a chosen D, A, B and @ set, thus 
providing the resonance magnetic fields B; and their intensities (relative weights) Wi. The 
whole magnetic-field range is subdivided into equal cells of width much narrower than the 
narrowest singularity in the experimental spectrum. For each site, numbers proportional to 
W; are stored in the cells corresponding to the B; values. As a result, a histogram of the 
absorption specmm is formed. 

At the next step, a convolution of this histogram is performed with a Gaussian or a 
Lorentzian derivative lineshape. This procedure has the triple objects of: 

(i) transforming an absorption curve to a derivative of absorption for comparison with 
experiment; 

(ii) smoothing the ’noise’ in the calculated spectra; and 
(ii) providing an additional broadening to account for distributions of spin Hamiltonian 

parameters omitted in (l), unresolved structures and relaxations. 

4. Choice of the distribution density 

The joint distribution density of spin Hamiltonian parameters in the EPR studies of glasses 
and other disordered solids most frequently is chosen in the form of a multidimensional 
Gaussian. For the spin Hamiltonian (l), neglecting a possible correlation between D and 
h, one gets 

(note that all h values outside the range of 0 < h < l j 3  must always be left out), where 
C is a normalization factor. A Gaussian distribution of parameters is usually related to the 
probability of a fluctuation, w (e.g. see [U]).  For an isolated thermodynamic system, w is 
proportional to exp(SS/kT), where SS is the entropy variation due to the fluctuation and k 
is the Boltzmann constant. Since S is maximal at equilibrium, SS is a negative quadratic 
form of the thermodynamic variables. Therefore, w must be the Gaussian function of the 
latter. It is evident however that, if this reasoning can hold for such parameters as D and 
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E ,  having the dimension of energy (a thermodynamic parameter), it can hardly be applied 
to the dimensionless ratio A = jE/DI.  Nevertheless, (10) can be considered as a convenient 
approximation that permits one to evaluate the mean values and distribution widths of D 
and h. 

A somewhat different approach to the distribution density P(D,  A) can be put forward 
on the basis of an analogy between the quadrupole fine-structure (QFS) parameters fZS], 

and the components of the electric-field-gradient (EFG) tensor [29J, 

In (11) and (12) q k  is the charge of the kth ligand, R k ,  0k and c#k are its radial, polar and 
azimuthal coordinates, YF are the second-order spherical harmonics and (r2) is the mean- 
square radius of the electron wavefunction. For the model of a random atomic arrangement, 
assuming a multidimensional Gaussian distribution of the EFG tensor components and taking 
into account the relation between the distribution of matrix elements and the distribution of 
eigenvalues, Czjzek er a1 U291 obtained 

P(V,,$ =constV,q 1--  exp -- 1 + -  ( "9') [ 23 33 
where q = 3h = (VI - V,)/V, and V,, V, and V, are components of the diagonalized 
EFG tensor. If adapted to the QFS case (Vz, 9 and U corresponding to 30, 3h and $U', 

respectively), (13) can be written as 

It has ben shown by Le Caer et al [30] that the distribution (13) results from very general 
statistical considerations, namely, that (i) the solid is macroscopically isotropic and (ii) the 
EFG tensor components are distributed according to a multidimensional Gaussian law. 

A number of modifications of the Czjzek distribution (13) have been proposed in order 
to account for the short-range ordering that persists to a certain extent in the vitreous state 
[30-331. Namely, for the quadrupole splitting A, the following distribution density has 
been put forward [31]: 

P(A) = constA'-' exp(-Az/2a2) (15) 

where 

A = constlV,I(l + q2/3)''2 

and d g 5 is the number of independent continuous random variables describing the 
manifold of site distortions. Adopting the distribution (IS), one should replace D4 by 
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Dd-’ in the distribution (14) as well. However, it has been sbown by Le CaEr et a1 [30] 
that (15), in fact, does not actually correspond to a macroscopically isotropic system. 

Another possible modification of (14) consists of reintroduction of non-zero mean values 
of the distributed fine-structure parameters, which are absent in the Czjzek function (13); 
e.g. see [33]. 

In the present study, the computer simulations of Fe3+ EPR spectra in borate glasses 
have been carried out assuming the Gaussian (IO) or the Czjzek (14) distribution density 
P ( D ,  A). 

B F n. 
c 0 

4 

*. 
0 

5. Results and discussion 

The results of computer simulations of the EPR spectra are presented in figures 2 to 8. All 
simulations have been made with the Lorentzian derivative lineshape F ( B  - Br, A 3 ) ,  see 
equation (3). which provides a better fit to the experimental EPR spectra. The peak-to-peak 
linewidth has been chosen as AB = 3.5 mT at X band and AB = 8 mT at Q band. 

EXPERIMENT ........ SLMUUTIONS 

I+-- . .  . . .  . .  . .  . .  . .  .. 
,..’ ! ..- : ................ /.. ....... : ........ “.??dt..” . .  

: r i  :.: ..’ 
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€. 
r 
2 w sa 

i :  

. :  ,..: : 
r’=0.20 , ............. ..... i. ....... - .,.. ..-. /’ i 

; j 

i .i.i . .; . .  
A :  :. .... ., . , 

: .  
.......... ..+ 

I 
140 150 160 170 1 

MRCNETIC FIELD (mT) 
0 

Figure 2. (a) Computer simulations of the experimental X-band EPR spectrum using the Czjzek 
distribution density (equation (14)) for different values of d. (b )  The gcr = 4.3 feature on a 
searer scale. 

First, we consider the X-band spectra simulations using the Czjzek distribution density 
(14); see figures 2(a) and (b). The only adjustable parameter in this case is the distribution 
width U’. One can see from the computer-simulated spectra that in the chosen range 
of variation of U’ only the get zx 4.3 and g,r 2: 9.7 features occur, in conformity with 
the experimental X-band spectrum. Within this range d mainly affects the width of the 
gd rz 4.3 feature and, as a consequence, the relative intensity of the gd = 9.7 feature (the 
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maximum intensity in computer-simulated spectra being normalized to unity). The best fit 
to the g,f 2: 4.3 feature is attained in the vicinity of U’ Y 0.20. Meanwhile, as the whole 
range of a’ values corresponding to various widths of the g,f Y 4.3 feature is scanned, the 
fit remains poor in the part of the spectra extending down to magnetic fields corresponding 
to g,f N 9.7. Indeed, instead of the smooth plateau apparent in this part of the experimental 
spectrum, an obvious hole shows in the computer-simulated ones. Thus, one can see that 
with the Czjzek function no satisfactory fit to the entire experimental Fe3+ EPR spectrum can 
be reached. Note that in the case of distribution (14) the most probable A value (maximum 
of the marginal P(A)  distribution) is 

[&(is - &i)]’/* N 0.262 

This value is not far from the limiting one, A = 1/3, corresponding to the ‘fully rhombic’ 
site symmetry. Therefore, the Czjzek function, in fact, describes a statistical ensemble of 
distorted sites, in which ‘fully rhombic’ distortions predominate. 

So far, in the framework of analysis based on the spin Hamiltonian (l), it has been 
generally acknowledged that Fe3+ spectra in glasses with the most prominent feature at 
g,f N 4.3 arise from exactly this type of ensemble, in accordance with the theoretical results 
obtained using the perlurbation theory. Indeed, the solution of the spin Hamiltonian (1) 
in the strong rhombic field case, (DJ = 3E >> ,9gB [Z, 17, IS,34], results in the effective 
g-factors 

g, = g,, = g, = % 4.3 

for the middle Kramers’ doublet, and 

g, = $ 2 0.86 g, = y(3 - fi) Y 0.61 g, = a ( 3  f fi) N 9.7 

and 

g, = $ Y D.86 g, = y(3  + f i) N 9.7 g, = y(3 - f i )  N 0.61 

respectively, for the upper and lower Kramers’ doublets (if D > 0). Thus, it can be 
concluded from the foregoing that such an ensemble obviously does not correspond to the 
real one. 

Next, we proceed to the simulations obtained with the Gaussian function (IO); see 
figures 3 to 8. In this case there are four adjustable parameters: DO, A D ,  A0 and AA. The 
most general characteristics of computer-simulated spectra are as follows. As long as the 
distribution density for D values smaller than or comparable to j3gB is not negligible, the 
feature at get N 2.0 is always present. On the other hand, if D values greater than p g B  
are most probable, the gd = 4.3 feature prevails. Figure 3 illustrates the characteristic: 
the g,f N 2.0 feature becomes apparent if either the distribution of D is large enough to 
encompass the range of small D values (trace 2) or the mean D value, DO, is sufficiently 
small (trace 3). As long as DO is greater than p g B  and/or the distribution of D is not too 
large, so as to avoid the range of small D values, the shape of the g,f Y 4.3 feature is 
almost insensitive to the DO and A D  values chosen; see figure 4. This makes a reliable 
estimation of these values from X-band spectra simulations extremely difficult. 

In this context, the Q-band spectrum turns out to be of great utility, since it 
simultaneously shows both the gd 2 4.3 and gd N 2.0 features; see figure 1. This fact 
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Figure 3. Computer s,imulations of the experimental 
X-band EPR spec" using the Gaussian distribution 
density (equation (10)). The simulation parsmeters Do, 
A D ,  AI, and AA are, respectively: 0.6 cm-l, 0.23 cm-I, 
0.04, 0.25 ( a c e  1); 0.6 cm-l, 0.26 cm-l, Q.02, 0.25 
(trace 2); and 0.5 cm-l, 0.23 cm-l. 0.04, 0.25 (trace 
3). 

Figure 4. Computer simulations of the experimental 
X-band EPR spectrum using the Gaussian distribution 
deisity. The simulation parameters Do. AD, A 0  and 
AA we, respectively: 0.6 cm-I , 0.23 cm-', 0.04, 0.25 
(trace 1); 0.5 cm-l. 0.19 cm-', 0.04. 0.25 (trace 2); 
and 0.8 cm-I, 0.28 cm-l, 0.02. 0.25 (ace 3). 

~ ~ 

~ 

indicates that the DO value must not be too far from the microwave energy quantum, about 
1.1 cm-' at Q band. Therefore, the simulated Q-band spectra turn out to be much more 
sensitive to the Do and A D  values in comparison to the X-band ones. As an example, 
two computer-simulated Q-band spectra are shown in figure 5. The upper one (trace 1) 
is in satisfactory agreement with the experimental spectrum in relative intensities of the 
g,f Y 4.3 and g,r = 2.0 features; however, the peak-to-peak widths are much too narrow, 
thus indicating that a too high Do value has been chosen. The lower trace 2 provides a 
quite satisfactory fit to the experimental Q-band spectrum in both the relative intensities and 
peak-to-peak widths. The Q-band spectra simulations made so f i r  are consistent with the 
Do and A D  values within the following limits: 

~ 

~ 

0.55 6 Do 6 0.85 cm-' 0.20 6 A D  6 0.30 cm-' 

It is seen, however, that the noise level in the Q-band computer-simulated spectra remains 
high, in spite of the very important number of sites involved in the calculation (almost 
180000). Indeed, the calculated B, values in this case are distributed in a very wide range 
(about 2400 mT). Therefore, more work seems to be necessary in order to specify further 
the DO and A D  values. 

On the other hand, the estimation of ho and Ah can be made on the basis of X-band 
spectra simulations, in which case the range of calculated B, values is much narrower 
and, consequently, the noise level is substantially lower, even for a smaller number of sites 
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EXPERIMENT 

n I ........... - SIMUUTIONS 

250 500 760 1000 I2kO 
MhCNETlC FIELD ( m T )  

Figure S. Computer simulvions of the experimenol Q-band EPR spectrum using rhe Gaussian 
distribution density. The simulation parameten Do, AD, A0 and AA are, respectively: 1.5 cm-’, 
0.62 cm-’, 0.06. 0.18 (mce I); and 0.6 cm-I, 0.23 cm-I, 0.04, 0.25 ( a c e  2). 

involved (see figures 3,4,6,7 and 8). The X-band spectra computed with the characteristics 
of D values distribution quoted above and with A values distributed in the range from about 
0.08 to 1/3 always show the sharp feature at ga N 4.3 and the ‘shoulder’ at g a  Y 9.7. 
Nevertheless, all simulations carried out with ho ranging from 0.08 to 1/3 fail to provide a 
satisfactory fit to the part of the EPR spectrum between ga  Y 9.7 and g.r N 4.3. Indeed, all 
these simulations (see two examples with ho = 0.18 and 0.10 in figure 6, traces 1 and 2) 
inevitably show the same type of hole as the simulations using the Czjzek function. Thus, 
in order to be able to ‘fill up’ this hole, one is bound to reconsider the statistical ensemble 
of site distortions contributing to the experimental EPR spectra. Computer simulations made 
with different non-distributed values of A g 0.08 (not shown here) demonstrate a net shift 
of the g,r Y 9.7 feature towards gef 6.0 as A approaches zero. This behaviour can also 
be established by inspecting appropriate graphs in the paper by Aasa [5], as well as on the 
basis of the perturbation theory analysis. Indeed, it is well known (e.g. see [I]) that, for 
ID1 >> f i g s  and h = 0 (axially symmetric sites), the spin Hamiltonian (1) provides three 
Kramers’ doublets, I & 5/2) ,  I f 3/2) and I i 1/2), only within the latter one of which are 
the EPR transitions allowed. The corresponding g-factors are [l] 

g, = g, = g l  = 6.0 g, = gll 2.0. 

One can conclude that, in order to provide an additional absorption in the range of effective 
g-values corresponding to the plateau in the derivative-of-absorption spectrum, the statistical 
ensemble of Fe3+ sites must comprise a considerable portion of sites with axial and feebly 
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rhombic (A < 113) distortions. Indeed, the computer simulations carried out with the 
Gaussian distribution density (10) and A,, < 0.08 show a much better agreement with the 
experiments in the range 5 4 gd 4 IO; see trace 3 in figure 6, as well as figure 7. 

- EXPERIMENT 
SIMULATIONS n 

I 3 L  
50 150 250 

MAGNETIC FIELD (mT) 

Figure 6. Computer simulations of the experimental 
X-band EPR spectrum using the Gaussian distribution 
density. The simulation parameLen Dn. AD and AA 
are, respectively. 0.8 cm-I, 0.28 em-I and 0.18 for all 
three computed spectra The parameter A,, is 0.18 (mace 
I ) ,  0.10 (trace 2)  and 0.05 (trace 3). 

I 

I . 50 150 250 3 
MAGNETIC FIELD (mT) 

I 

Figure 7. Computer simulations of the experimentnl 
X-band EPR specmm using the Gaussian distribution 
density. The simulation parameters Do and AD ye, 
respectively, 0.8 cm-’ and 0.28 cm-’ for all three 
computed spectra. The parameten AI) and AA ye, 
respectively: 0.04 and 0.14 (tmce 1); 0.04 and 0.20 
(trace 2); and 0.03 and 0.25 (trace 3). 

In this context, it seems pertinent to recall to the reader’s attention that Castner eta1 [I] 
assumed from structural inferences a very important part (about 2 3 )  of Fe3+ ions in silicate 
glasses to be in axially symmetric sites. They claimed, however, not to observe these sites 
in the EPR spectra. Still, an inspection of figure 1 in their paper [I] suggests the presence 
of approximately the same portion of Fe3* ions in axial sites in the silicate glasses as in 
the borate one (cf with figure l(a) of the present paper). 

Furthermore, a good computer fit to the relative intensities of the ‘shoulder’ at g,f =I 9.7 
and the sharp feature at g,r zx 4.3 in the experimental X-band EPR spectrum can only be 
reached if one assumes a sufficiently wide distribution of A, which encompasses h values 
tending towards 113, as well (see figure 8(a)). The most satisfactory computer-simulated 
spectra are obtained for 4 and AA within the following limits: 

0.025 < A0 < 0.055 0.20 < AA 4 0.27 

see figures S(a) and (b), traces 1 and 2. (We remind the reader that the A values are always 
confined between 0 and 1/3; consequently, values outside this range must be excluded from 
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Figure 8. (U) Computer simulations of the experimenol X-band EPR specuum using the Gaussian 
distribution density. The simulation panmeter Ah is 0.25 for dl three computed speem. The 
parameten DO, AD and An ace, mpctively: 0.6 cm-'. 0.23 cm-I and 0.04 (trace I); 0.6 cm-I, 
0.23 cm-' and 0.02 (mce 2); and 0.8 0.28 cm-' and 0 (trace 3). [b)  The low-field p a i  
of the simulated spec- on a p a t e r  scale. 

consideration.) Note that Ao values less than 0.02, while preserving the plateau in the low- 
magnetic-field range, produce too mu.ch intensity in the ge N 6.0 range: see figure 8(b), 
traces 2 and 3. 

As far as the best-fit parameters of the distribution density of spin Hamiltonian 
parameters found in this study are concemed, it is interesting to note that relatively high 
values of DO, previously reported for Fe3+ in a series of a l k a l i n e e d  phosphate glasses 
[17,18], are close to that found for the borate glass. These values imply a highly distorted 
environment for Fe3+ ions in oxide glasses. On the other hand, the broad distribution of h 
values found for the borate glass seems to be in contrast with relatively narrow distributions 
of the fine-structure parameter E in phosphate glasses [17, IS]. This discrepancy may be due 
to different forms of the distribution density of fine-structure parameters used in computer 
simulations in the two cases. 

Finally, it should be noted that, as a close inspection of figure S(b) reveals, in spite of 
the visibly improved fit to the experimental Fc'" EPR specha for low A0 values, a certain 
disagreement persists, which cannot be removed within the framework of the distribution 
density (10). In this connection, it would certainly be interesting to attempt computer 
simulations of the Fe3' EPR spectra in glasses using distribution densities other than (10) 
and (14). These simulations are at present in progress. Nevertheless, already at this stage 
one can argue that the relatively high probability of small A values, as inferred from the 
above analysis, rules out all distribution densities that contain A (respectively, q) as a factor, 
that is, not only the Czjzek function, but also those put forward in [29-331. If this proved 
true, there should exist a certain difference between the functional forms of distribution 
densities of EFG and QFS in glass. 
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6. Conclusions 

The experimental EPR spectra of Fe"' ions in oxide (borate) glass are well described by the 
'rhombic' spin Hamiltonian that contains only the Zeeman and quadrupole fine-structure 
terms. The fine-structure parameter distribution function analogous to that used by Czjzek 
et al [29] in Mossbauer-effect studies cannot satisfactorily account for the spectral shape 
of Fe'+ in borate glass. The two-dimensional Gaussian function certainly provides a much 
better approach to the actual distribution density of the finestructure parameters. The best-fit 
fine-structure parameter values obtained for the borate glass imply that: 

(i) the environment of Fe3+ ions is highly distorted; and 
(ii) in contrast to the generally acknowledged concept, according to which the 

predominance of the g,p N 4.3 feature in the EpR spectra of glasses is considered as 
a manifestation of orthorhombic distortions (ho N 1/31. an important part of Fe3+ ions 
in borate glass are subject to axial or feebly rhombic distortions from cubic symmetry 
(h  < 0.08). 

As far as very similar EPR spectral shapes of Fe'+ ions are observed in borate, phosphate 
and silicate glasses [17,18], it seems that analogous conclusions can be applied to other 
vitreous oxides as well. 
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